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Scale-separation methods are a class of spatial verification methods (Gilleland et al., 2010) which enable i) the 
comparison of the scale structure of gridded products, such as reanalyses, forecasts from numerical models, and 
gridded observations; ii) the assessment of bias, error and skill on different scales; and iii) the analysis of the scale 
dependency of forecast predictability. In this study we apply novel scale-separation diagnostics and introduce the 
Symmetric and Bounded Efficiency for the comparison of precipitation reanalyses with different spatial 
resolutions. The COSMO-REA6 reanalysis (6km resolution) is compared against the ERA5 reanalysis control 
member (HRES, 31km resolution) and 10 ensemble members (EDA, 62km resolution). 24-hour accumulated 
precipitation fields are decomposed into the sum of components on different spatial scales by using a 2D Haar 
wavelet filter. The separate scale components are then compared by using the continuous verification statistics 
listed in Table 1.  
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Table 1: scale-separation diagnostics, where X and Y indicate the gridded observation and forecast compared, 𝜇 
the mean, 𝜎 the standard deviation, r the correlation, following conventional statistical notation. 

The scale-separation diagnostics are illustrated in Figure 1. The energy (𝐸𝑛") and its square-root (𝐸𝑛, Fig.1a) are 
proportional to magnitude and number of precipitation features on each scale. Comparison of the energies 
informs on biases on different scales and on the scale structure. All products show that the dominant precipitation 
features have scales ranging between 200-400km. As expected, the COSMO-REA6 (in grey) has larger energy, much 
more small-to-medium scale features, than the ERA5 products. The ERA5 control member (in red) has slightly more 
small-scale details than the lower resolution ensemble members (in blue). The energies on the different scales are 
compared by the Normalized Bias (NB), which is the difference between the two energies divided by their sum. For 
the wavelet components (which have null spatial average 𝜇! = 0) the energy 𝐸𝑛!" 	is the variance 𝜎!", whereas for 
the largest scale component (which is a constant field with 𝜎!" = 0) the 𝐸𝑛! is the field spatial mean 𝜇!. Hence, 
the NB comparing square-root energies is the NB comparing the scale component standard deviations and the field 
spatial averages (Table 1). Normalized (and bounded) statistics facilitate the comparison and aggregation of 
verification results, e.g. for sites with different climatologies. The square-root energy NB is bounded (it ranges 
between -1 and 1) and symmetric (its absolute value does not change if we swap the two products compared): 
these two key properties enable the definition of the Symmetric and Bounded Efficiency.  

While assessing the Mean Squared Error (MSE) and correlation on different scales (Fig.1b,c), the correlation 
separates the performance of the ERA5 products, whereas the MSE does not. In fact, the MSE highly depends on 
the variability of the products compared, both observation and forecast variabilities (Table 1), so that higher 
resolution forecasts (which have higher variability) tend to be penalized more heavily with respect to 
coarser/smoother forecasts. The reduction of variance, also known as Nash Sutcliffe Efficiency (NSE), is the MSE 
skill score against sample climatology (MSEclim=	𝜎!"), and it was introduced to reduce the effect of the variability 
while assessing the forecast performance. However, the NSE compensates solely for the observed variability (the 
MSE is normalized by the observed variance only). Then, the MSE shortcoming when comparing forecasts with 



different resolutions is still not addressed by the NSE: the higher resolution/noisier forecast is still penalized more 
heavily compared to the coarser/smoother one, and also the NSE cannot separate the performance of the two 
ERA5 products (Fig.1d). The MSE skill score against random chance (SSrand, Table 1) normalizes the MSE by the 
variances of both observation and forecast products (the forecast variability is factored in), and is therefore 
capable of separating the performance of the ERA5 products (Fig.1e). The SSrand allows a fairer comparison of 
products with different resolutions and enables the assessment of the added value of increasing resolution.  

The Kling and Gupta Efficiency (KGE) combines in a single performance measure the comparison of forecast and 
observation variances and averages, and the two products correlation. The KGE also allows a fair comparison of 
forecasts with different resolutions, and is capable of separating the performance of the ERA5 products (Fig.8 of 
Casati et al., 2023). However, the KGE compares variances and averages by their ratio, which renders the KGE 
asymmetric and unbounded (the score can attain very large negative values e.g. when comparing a smooth 
forecast versus a noisy observation). The Symmetric and Bounded Efficiency (SBE) is then defined as the KGE, but 
the variances and averages are compared by the NB (Table 1). The SBE is then bounded and capable of separating 
the performance of the ERA5 products (Fig.1f). Both SSrand and SBE are symmetric, hence they are invariant with-
respect-to the definition of observation and forecast in the comparison of the two products, whereas NSE and KGE 
are not symmetric, and their values (as well as the no-skill to skill transition scale) change if the order of 
comparison of the two products is swapped. 

 

   

   

Figure 1: scale-separation diagnostics comparing the ERA5 products against COSMO-REA6. The shading shows the 
bootstrap 90% confidence intervals of the aggregated statistics on 50 intense precipitation case studies.  

The scale-separation diagnostics in Figure 1 consistently show that the reanalyses are in strong agreement on 
large scales, and exhibit weaker agreement on (less predictable) small scales. The stronger agreement of HRES with 
COSMO-REA6 (compared to EDA) is due to a more similar representation of the variability at small-to-medium 
scales, as well as a better linear dependence (correlation). On the largest scale, on the other hand, HRES is slightly 
underperforming EDA due to over-forecast bias. 
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