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1. Introduction

The Global Forecast System (GFS) was updated from version 15 to 16 on 22 March, 2021. GFS.v16 has
its number of vertical layers increased from 64 to 127 and model top extended from 54 km to 80 km.
Physics parameterizations in GFS.v16 were also improved. It  is the first major upgrade to the Finite-
Volume Cubed-Sphere (FV3) dynamical core-based GFS (Lin and Rood, 1997; Putman and Lin, 2007)
since its implementation for operation in 2019. Retrospective and real-time experiments were performed
to evaluate the model performances. However, GFS.v16 encountered a few model instability failures from
real-time parallel experiments. The diagnosis of these cases and the solutions proposed to remove the
numerical instability are summarized in this study.

2. Diagnosis of failed cases

There  were  nine  failed  cases  in  total  from  the  GFS.v16  real-time  parallel  experiment.  The  model
integration  was  interrupted  when  the  pressure  thickness  of  a  certain  layer  became negative  or  the
thickness expressed in height became NaN (not-a-number). It was found that all these cases failed over a
land grid when a strong tropical cyclone approached from the east. For example, the case initialized at
18Z UTC on 22 July 2020 failed when the eyewall of a strong tropical cyclone reached the Philippine east
coast with strong onshore winds of about 40-50 m/s. By examining the model prognostic variables at each
acoustic time step (12.5s), we found that the upward motion at lower levels at the grid points in question
increased with time and then abruptly changed to unrealistically strong downdrafts (>300m/s) before the
model crashed. 

In the FV3 dynamic core for  GFS.v16, the pressure perturbation  p′ and vertical  velocity  w  tendency
equations solved in a semi-implicit time-difference scheme are transformed to a tridiagonal matrix system
of equations for w. This system requires coefficients and weights related to p′ and layer thickness δz to
solve w using the Thomas algorithm. In the corresponding subroutine for the non-hydrostatic adjustment,
the layer-mean non-hydrostatic pressure perturbation is calculated first with  p′ = p – p*,  where  p* is
hydrostatic pressure and p is full pressure, and can be calculated from the ideal gas law:

p=exp {γlog(−Rdθv
∂m
∂z

)}                      (1)

Figure 1. The time series of δz (left panel), full pressure (middle panel) and hydrostatic pressure (right panel) at the
crash gridpoint. The black, red and blue curves represent the three lowest model levels km, km-1, km-2 respectively.

All the variables that are used to compute w are investigated.  An unrealistic full pressure (>5000 hPa) is
identified at the model lowest level at many acoustic steps (about 200 seconds) before the model crash,
while the hydrostatic pressure and other variables remain to be normal (Fig. 1). The problem in the full
pressure is further tracked back to the presence of an extreme small depth thickness at the lowest model
layer where δ z  is very close to zero (Fig. 1).  GFSv16 has 127 vertical layers with the lowest layer being
about 20 m thick on average.  It is unphysical for δ z  reaching to zero.  



The forward-in-time advective processes are performed to generate the partially-updated geopotential
height  z before the non-hydrostatic adjustment in the FV3 dynamics. Note that the update of  z through
advection processes does not directly solve an equation for the volume of a grid cell, and it is forward-in-
time as the sum of the advective height flux along the Lagrangian interfaces and the vertical distortion of
the surfaces by the gradient of  z. To solve  z on the interfaces, the advecting winds are appropriately
interpolated from layer means onto the layer interfaces by solving a tridiagonal system of equations based
on the Parabolic Spline Method (PSM, Zerroukat et al. 2006) with high-order boundary conditions.

Figure 2 shows the time series of geopotential height at the break grid at the model lowest layers before
and after the advection processes. The only evident change in terms of  z with model integration is the
increasing z at the model lowest level after advection, which is consistent with the decreasing of thickness
depth seen in Figure 1. 

Figure 2. The time series of the 
geopotential height at the break 
grid at the model lowest three 
levels before (left panel) and after
(right panel) the advection 
processes.

3. Potential solutions

An artificial limiter for the minimum thickness depth is defined in the FV3 dynamic code. This limiter is 
used with a value of  2 (meters)  to  enhance the monotonicity  of  height  after  the advection  of z.  We 
performed extensive  sensitivity  tests  to  stabilize  the  model  with  many  other  options  and  found  that 
increasing the value of minimum thickness depth from 2 to 6 is the most effective and simple way to avoid 
model crashes. More importantly this fix has a very little impact on forecast skill. This temporary fix was 
implemented in GFSv16 to meet the model upgrade schedule. 

Since the model instability issue likely originated from the advection of  z at the model lowest level, we 
proposed to  use  zero-gradient  boundary  conditions  (BCs),  instead  of  high-order  BCs,  to  reconstruct 
horizontal winds at the interfaces from layer means with PSM. The new BCs do not impact interior winds, 
except for smaller vertical gradients in the lowest model layers in the vertical. With the new BCs, all the 
originally failed cases were run successfully for 16 days in forecast length without applying the minimum 
thickness limiter. 

The impact of this new method on model forecast was investigated in GFS.v16, the FV3-based limited 
area model and idealized mountain ridge experiments. Results show that this new method can effectively 
solve the model instability issues while incur little  impact on forecast performance and the numerical 
solutions of idealized mountain waves.
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