Polar Lows: Statistical relationship between size and duration

Mokhov I.I.^{1,2}, Poroshenko A.G.¹

¹A.M. Obukhov Institute of Atmospheric Physics RAS

²Lomonosov Moscow State University

mokhov@ifaran.ru

Statistical estimates of the relationship between the characteristic sizes (R) and the lifetime (τ) of polar mesocyclones (Polar Lows, PL) were obtained according to STARS data (Sea Surface Temperature and Altimeter Synergy for Improved Forecasting of Polar Lows) for the period 2002-2010 [1] (see also [2]). STARS data, based on satellite infrared images obtained using the AVHRR (Advanced Very-High-Resolution Radiometer) instrument, characterize PL parameters over the Norwegian and Barents Seas with hourly resolution.

Figure 1 (a,b) shows characteristic PL maximum and mean size R [km] in dependence on PL duration τ [hours]: $R = R \max$ (a), $R = R \max$ (b). In Fig. 1, different branches can be distinguished for the relationship between the characteristic size and duration of PLs. In particular, it is possible to highlight the features of PLs with $R \le 200$ km and with R > 200 km. Nonlinear features are displayed for the largest PLs in dependence on their duration.

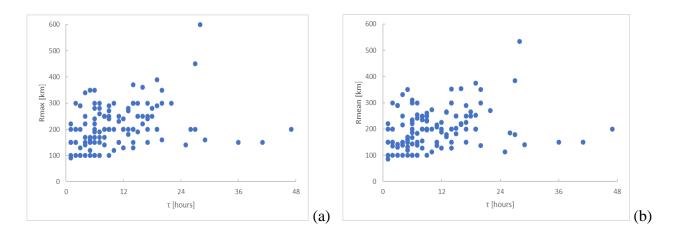


Fig. 1. Characteristic PL maximum and mean size R [km] as a function of PL duration τ [hours]: $R=R\max$ (a), $R=R\max$ (b).

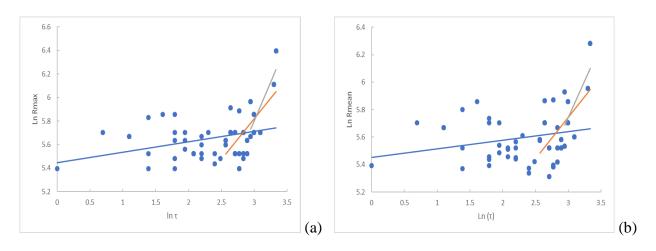


Fig. 2. Characteristic PL size R [km] (> 200 km) in dependence on PL duration τ [hours]: (a) $\ln R$ max vs $\ln \tau$, (b) $\ln R$ mean vs $\ln \tau$.

Table 1 presents the estimates of $k_{\rm M}$ and $k_{\rm m}$ with their standard deviations, as well as the correlation coefficients r for the corresponding linear regressions $\ln R$ on $\ln \tau$.

Table 1. Estimates of $k_{\rm M}$ and $k_{\rm m}$ with their standard deviations for the corresponding linear

regressions ln R on $ln \tau$ (in brackets: correlation coefficients r)

R > 200 km	kм (r)	k _m (r)
$\tau > 6$ hours	0.09±0.04 (0.32)	0.06±0.04 (0.23)
$\tau > 12$ hours	0.69±0.19 (0.64)	0.60±0.20 (0.55)
$\tau > 18$ hours	1.30±0.43 (0.80)	1.07±0.50 (0.69)

The most statistically significant estimates of $k_{\rm M}$ and $k_{\rm m}$ were obtained for longer lived PLs (with $k_{\rm m}$ about 0.6 and $k_{\rm M}$ about 0.7 for PLs with $\tau > 12$ hours and with $k_{\rm m}$ about 1.1 and $k_{\rm M}$ about 1.3 for PLs with $\tau > 18$ hours).

The analysis of polar mesocyclones was carried out within the framework of the RSF project (19-17-00240).

References

[1] Noer G., Saetra Ø., Lien T., Gusdal Y. (2011) A climatological study of polar lows in the Nordic Seas. *Q. J. R. Meteorol. Soc.* **137**: 1762–1772.

[2] Akperov M.G., Mokhov I.I., Dembitskaya M.A. (2017) Arctic mesocyclones from satellite data and model simulations. *Current Problems in Remote Sensing of the Earth from Space*. **14** (3): 207-304. DOI:10.21046/2070-7401-2017-14-3-297-304