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Introduction

The ratio of predictable components (RPC) is a useful metric of forecast skill (Kumar et al. 2014;
Eade et al. 2014), although it begs the question of whether one should expect an ensemble mean to covary
more with observations than with its own ensemble members. An implicit assumption is that the forecast
model is independent of observations, but even if the forecast model is not assimilative, there remains the
possibility that errors are correlated, or in other words, that the observation and forecast model measures
[in the context of a simple measurement model (Siegert et al. 2016)] are still not independent. A new
correlation method has been developed by Székely et al. (2007) and Székely and Rizzo (2009) that allows
this statistical independence assumption to be tested. We compare the two RPC values for a single raw
ensemble simulation using the Lorenz 1963 modelling framework of Mayer et al. (2021).

Results

Figure 1: Distributions of the ratio of predictable components (RPC) for 100 40-member ensemble hindcasts
of the Lorenz model (Mayer et al. 2021), where RPC is computed as a ratio of (red) Pearson correlations
(Scaife and Smith 2018) and (blue) distance correlations (Székely et al. 2007; Székely and Rizzo 2009).
The bin interval is 0.05 and the mean and standard deviation of the two distributions are included.

It is convenient to calculate a distance correlation RPC without the added concern of timeseries au-
tocorrelation. Thus, instead of the monthly and seasonally averaged timeseries that is the focus of Mayer
et al. (2021), we start with one of their raw ensemble simulations. For each of 100 different initial conditions
on the Lorenz attractor, a noisy observational simulation and a 40-member ensemble is used to calculate
RPC using either a ratio of Pearson or distance correlations (the RPC numerator is the correlation of
observations with ensemble-mean, and the denominator is the average correlation over all ensemble mem-
bers with the mean, excluding that member). In order to avoid autocorrelation, 20 samples at 100 time
intervals are taken from each 2001-unit perturbed raw timeseries.

Figure 1 shows one of the underconfident (i.e., large initial spread) ensemble experiments of Mayer
et al. (2021), which yields a mean RPC (Pearson) of greater than one and a large RPC standard deviation
as well. Interestingly, the RPC (distance correlation) has a mean value closer to one, and hence, is more
consistent with expectations (Kumar et al. 2014; Eade et al. 2014). The RPC variance is also much reduced.
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Summary

It may be difficult to define predictability, and thus any linear measure of it, but perhaps a distance
correlation RPC is also a viable diagnostic of forecast model skill. The physical basis for assuming that
measures are independent is sound, although measurement models themselves are typically simple, and
may implicitly impose a dependence. Strictly speaking, we do not consider a forecast ensemble that
is marginally calibrated (Siegert et al. 2016), but it seems notable that under this assumption, RPC is
approximately β−1 (i.e., inverse of the multiplicative parameter of linear agreement between model and
observations). However, it is difficult to anticipate a value of β between the limits of ordinary and reverse
linear regression. For a given value of distance correlation between 0 and 1, it seems that any value of β
is possible (Edelmann et al. 2021).
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