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There are plans at  EMC to replace the covariances used for background error within the Real-Time
Mesoscale Analysis (RTMA, de Pondeca et al., 2011) with a dynamically adaptive formulation based on
compact-support beta distribution filters (“beta filters”) embedded in a computationally efficient distributed
multigrid  algorithm (Purser  et  al.  2021).  In  the  present  operational  two-dimensional  formulation,  the
covariance  is  static,  although  possessing  anisotropic  and  spatially  inhomogeneous  features  tied  to
orography. But it uses recursive filters (Wu et al., 2002), which have proven to be difficult to parallelize
efficiently. The inherently more efficient and more versatile multigrid beta filter (MGBF) covariances that
we are extending into three dimensions offer us the opportunity to make these covariances adapt not only
to fixed terrain, as is presently done, but also to the ambient flow conditions, and to the evident variability
and uncertainty that we can deduce by exploiting the availability of ensembles of short forecasts. In order
to make the connection between suitable diagnostics of the background field and ensemble on the one
hand, and the covariance amplitude and anisotropy parameters on the other hand, we plan to employ the
machine learning techniques of artificial neural networks (NN, Krasnopolsky 2013). 

One problem we encounter is that the spatial shape of the covariance response is characterized not by
independent scalar parameters, but by a tensor (an “aspect tensor”) whose symmetry and positivity must
be preserved. The ensemble-averaged outer-product of gradients of the fields formed by the departures
of the ensemble members about their collective mean form a tensor which, when suitably mixed with a
regularizing  horizontally  isotropic  tensor  and  the  result  inverted,  provides  a  tensor  of  the  desired
character, stretching the covariance response in the direction indicated by the ensemble. It is then the
mixing weights (positive scalars) involved in this process that we can ask the NN to supply, as “outputs” in
response to local atmospheric diagnostics, such as windiness, static stability, and ensemble variance, as
well as fixed terrain diagnostics, that can be gathered as “inputs” to the NN. The covariance amplitude,
i.e., the background error variance, for each analysis variable, is another set of parameters that we can
ask a trained NN to provide in response to diagnostics from the background field and ensemble. 

Another problem we must address is the “training” of the NN, which entails establishing a formal criterion
that corresponds to an objective measure of the quality of the covariance estimate that the NN implies,
over numerous archived cases. This needs to be set up in such a way that we can iteratively search for
the combination of the very numerous internal weights of the NN that appear to optimize the choices of
covariance parameters conditional on the characteristics of ambient flow and of the diagnosed variability
within the ensemble. Fortunately, the products of nearby pairs of the observation innovations constitute
unbiased  (though  obviously  very  noisy  and  sporadic)  “measurements”  of  the  covariance  of  these
innovations. We can therefore use a weighted sum of the squares of the differences between a thinned
subset of the products of innovation pairs, and the corresponding modeled covariance estimates, since
these latter estimates only differ from the background error covariances by the addition of the small, and
reasonably well  known, diagonal covariance of the observation errors. It  is the fact that the modeled
covariances in the multigrid  scheme are made up of  additive  quasi-Gaussian contributions,  the beta
filters, that will  allow us to approximate these contributions by the true analytic Gaussians during the
training  phase  of  establishing  the  NN  weights.  It  is  important  that  the  covariances  be  analytically
differentiable with respect to their parameters, since the training process requires that the derivatives of
the quality criterion be expressible explicitly with respect to the internal weights of the NN (through the
“back-propagation” application of the chain rule) in order that these weights can be efficiently optimized.
Once the NN has been successfully trained on a varied and representative archive of past cases, we
believe we shall be able to implement a dynamically adaptive analysis for the RTMA using the multigrid
beta filter approach, guided by the diagnostics we have available from the ensemble of short forecasts,
from the background fields itself, and from the local topography. 
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