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Introduction. In this note we are concerned with the problem of interpolation of a random field ( ),f x x  

from a scattered set of SYNOP stations , 1...jx j m=  onto another set of points y  in a domain   on Earth surface. 

We will be using the moments of the field ( )f x : the mean ( )x , the spread ( )x , and the correlation function

(CF) ( ),K x y . It is also natural to assume that the interpolation result f̂  depends linearly on the interpolated

data: 
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where ( )xw y  is the (unknown) column of the interpolation weights we are looking to compute, xf  is column of

known values of f . We can state the optimization problem as a problem of minimizing the mean interpolation 

loss L: 
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where e  is the loss function and ˆ
jf  is the interpolating operator computed from the same set of data without

taking into account the value ( )jf x . The classical optimal interpolation method [1] uses the mean squared error 

as loss function and computes the interpolation weights from the equation: 

( ) ( ),xx x x xyK w y K y   =   

where xxK  – the positive definite m m  correlation matrix,  stands for the Hadamard product. 

The problem of estimating the correlation function K is easy to solve for homogeneous and isotropic fields f, i.e. 

in the case ( ) ( ),K x y K x y= − . The case of inhomogeneous fields that we address here is more complicated. It

follows from Mercer's theorem [2], [3] that the feature mapping :g H→  exists for any field f, where H is 

Hilbert space. Furthermore, the feature mapping g turns inhomogeneous anisotropic field f into a homogeneous 

isotropic field in a Hilbert space H: 

( ) ( ) ( )( ), .g H
K x y K g x g y= −  

Several papers [4], [5], [6] suggest methods for approximation of the feature mapping g and maximization of the 

logarithm of the likehood in Gaussian covariance model: 
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where ( )f f  = −  is the normalized field. However, this choice is questionable, since the interpolation

function (1) and the functional (2) depend only on the local oscillations of the means ( ) ( )x y −  and the spreads

( ) ( )/x y  , while the functional (3) depends on their absolute values.

Approach. Let Θ( x) be a set of predictors of inhomogeneity of the interpolated field f. For minimizing the 
interpolation loss (2) we shall apply the backpropagation method [7] to the following functions, described by the 

neural networks and parameters: 

1. The feature mapping g to the 4-dimensional space H as a graphic of the neural network :g

( ) ( )( ), ;g x x g=   

2. The mean ( ) ( )( )x x =   and the spread ( ) ( )( )x x =   as the neural networks;

3. The parameters ( )1 2, , ,R R  =  of family of CFs:
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where ( ) ( ) ( ) ( )
22

r g x g y x y g x g y= − = − + − – the distance in extended space H.



All neural networks we consider are two layers perceptrons with the ReLU activation function and 32 neurons at 

hidden layer. The Huber loss function [8] is chosen. 

Examples. We shall demonstrate our approach for two fields of particular interest: 1) the 2-meter temperature 

T2m model biases; 2) the snow depth SD. We consider the following set of predictors of inhomogeneity : 

A. The first guess field (for T2m only; the COSMO-Ru model [9] forecast with lead time 6 hours); 

B. The Earth surface altitude; 

C. The sine and cosine of the Julian day 2 / ,yt T  where t is time, 1 year;yT =  

D. The elevation angle of the Sun. 

The feature mapping g has to be injection and should take into account all predictors of inhomogeneity .  

Results. Adding additional dimensions to the feature mapping allows us to explain most part of the variance of 

the fields T2m and SD: the ( )lim ,
y x

K x y
→

 is significantly larger (see figure). Moreover, the presented method gives 

more accurate and more detailed fields: since due to our choice of the feature mapping the CFs decrease much 

faster. Finally, the backpropagation for interpolation losses allows us to avoid extra assumptions on the field f. 

a)  

 

b)  

 
Figure. The CFs for a) T2m model biases and b) snow depth SD as the functions of the distance (x-axis). Orange curves 

correspond to the extended 4-dimensional space H and the blue curves correspond to the real space with extra assumptions 

of homogeneity and isotropy. 
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