Cold winters in the North Eurasian regions: Risk assessment of El Niño effects

I.I. Mokhov^{1,2}

¹A.M. Obukhov Institute of Atmospheric Physics RAS ²Lomonosov Moscow State University mokhov@ifaran.ru

The impacts of the El Niño phenomena are significant on a global scale, including North Eurasian regions (Mokhov, Timazhev, 2015; Mokhov, Timazhev, 2016). Here the risk of cold winters, in particular extremely cold winters, in North Eurasian regions is assessed for different El Niño phases. The monthly-mean data for surface air temperature (SAT) anomalies δ T in January and February for the period 1936-2014 from (Meshcherskaya and Golod, 2015) for different regions are used. In particular, the ratio of SAT anomalies for January and February to the standard deviation σ T for the period 1961-1990 (index $\alpha = \delta T/\sigma$ T) was used for different Russian regions. Winters are ranged for each region as extremely cold winters (ECW), considerably cold winters (CCW) and moderately cold winters (MCW).

Figure 1 shows significant positive SAT anomalies in North Eurasian regions during the El Nino in January 2019 (relative to the period 1951-1980) from GISS data (https://data.giss.nasa.gov/gistemp/).

Table 1. Probability of different El Nino phases (characterized by indices Nino3 and Nino4) during 1936-2014.

1936-2014	N	E	L		
	$\boldsymbol{n}_N / \boldsymbol{n}_\Sigma$	$\boldsymbol{n}_E / \boldsymbol{n}_\Sigma$	n_L / n_Σ		
Nino3	44/79 (0.56)	16/79 (0.20)	19/79 (0.24)		
Nino4	40/79 (0.51)	21/79 (0.27)	18/79 (0.23)		

Table 1 presents estimates for probabilities $(n_E/n_{\Sigma}, n_N/n_{\Sigma}, n_L/n_{\Sigma})$ of years starting with El Niño (E, n_E) , La Niña (L, n_L) or neutral (N, n_N) phase of ENSO processes detected with the use different indices (Nino3 and Nino4) for the period 1936-2014 $(n_{\Sigma}=79 \text{ years})$.

1936-		European region			Baikal Lake region			Amur River region		
2014		European region			Baikai Lake region			Amur Kiver region		
		ECW	CCW	MCW	ECW	CCW	MCW	ECW	CCW	MCW
	3.7	- 10	- 11 1	0/1 =		E /1 1	11/20	4.10		11/20
Nino3	N	5/8	6/11	8/15	5/8	6/11	11/23	4/8	7/11	11/20
		(0.63)	(0.55)	(0.53)	(0.63)	(0.55)	(0.48)	(0.50)	(0.64)	(0.55)
	L	3/8	4/11	3/15	0/8	0/11	8/23	1/8	2/11	5/20
		(0.38)	(0.36)	(0.20)	(0)	(0)	(0.35)	(0.13)	(0.18)	(0.25)
	E	0/8	1/11	4/15	3/8	5/11	4/23	3/8	2/11	4/20
		(0)	(0.09)	(0.27)	(0.38)	(0.45)	(0.17)	(0.38)	(0.18)	(0.20)
Nino4	N	3/8	6/11	10/15	7/8	5/11	11/23	2/8	8/11	13/20
		(0.38)	(0.55)	(0.67)	(0.88)	(0.55)	(0.48)	(0.25)	(0.73)	(0.65)
	L	3/8	4/11	2/15	0/8	0/11	6/23	2/8	1/11	4/20
		(0.38)	(0.36)	(0.13)	(0)	(0)	(0.26)	(0.25)	(0.09)	(0.20)
	E	2/8	1/11	3/15	1/8	6/11	6/23	4/8	2/11	3/20
		(0.25)	(0.09)	(0.20)	(0.13)	(0.55)	(0.26)	(0.50)	(0.18)	(0.15)

Table 2. Pobability of extremely cold winters (ECW), considerably cold winters (CCW) and moderately cold winters (MCW) in three North Eurasian regions to the south from 60°N in different phases of El Nino, characterized by indices Nino3 and Nino4.

Table 2 shows estimates for probabilities of extremely cold winters (ECW), considerably cold winters (CCW) and moderately cold winters (MCW) in three North Eurasian regions to the south from 60°N in different phases El Nino, characterized by indices Nino3 and Nino4. Probability larger than probability of corresponding El Nino phase are noted in bold. According to Table 2 there is a small probability of ECW and CCW in years starting in *L*-phase in the Baikal Lake region and in *E*-phase in the European region. Quite different risks of cold winters are estimated for the Amur River basin on Far East. The ECW probability for this region in the *E*-phase is quite high. In the European region the probability of ECW and CCW is quite high in the *L*-phase.

This work was supported by the RSF (project No. 19-17-00240). The results obtained in the framework of the RAS Presidium program "Climate change: causes, risks, consequences, problems of adaptation and regulation" and RFBR (projects No. 17-05-01097 and No. 17-29-05098) were used.

References

- Mescherskaya A.V., Golod M.P. Catalogs of abnormal winters over the Russian territory. Proc. MGO, 2015, **579**, 130–162. (in Russian)
- Mokhov I.I., Timazhev A.V. Drought risk in the North Eurasian regions: Assessment of El-Nino effects. *Res. Activ. Atmos. Ocean. Model.* E. Astakhova (ed.). WCRP Rep. No.12/2015, 2015, 2.6–2.7.
- Mokhov I.I., Timazhev A.V. Weather-climate anomalies in Russian regions: El Niño-associated predictability. *Res. Activ. Atmos. Ocean. Model.* E. Astakhova (ed.). WCRP Rep. No.15/2016, 2016, 6.9–6.10.