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1.  Introduction 

At the Environmental Modeling Center, NCEP (National Centers for Environmental Prediction), we are working on 

meeting the challenge of adding cloud-resolvable and deep-atmospheric capabilities to the NCEP GFS (Global 

Forecast System), which is our global atmospheric spectral modeling system.  To have a very fine resolution global 

spectral model, there are two major obstacles to conquer, based on the experiences of ECMWF (Wedi et al. 2012): 

one is the capability to do a spectral transform with thousands waves; the other is the speed up of the fast Legendre 

transform.  There are potential problems which result in less accurate coefficients, even in corrected Legendre 

polynomial coefficients in a high resolution spectral transform, if we prepare the coefficients with different iteration 

methods. And there are several different iteration methods as shown in Swarztrauber (1993), however, we selected 

one with an easy implementation for parallel computing but which requires resolving a machine underflow problem.  

 

2.  Accurate associated Legendre polynomial with very high resolution 

There is an underflow problem in computing the Legendre base function for transform in the traditional three-item 

iteration method, which results in an error transformation for wave numbers larger than 1900 with double precision, 

and wave numbers larger than 900 with single precision. A method we call x-number has been implemented into the 

NCEP GFS to avoid this underflow problem, thus the transformation can be applied to any given high resolution up 

to several thousand wave numbers. The method is described in detail in Fukushima (2011), which we can paraphrase 

briefly here as follows: 

Any real number, f, can be represented by one real number and one integer number with a big base as 

 f = xBi 

where x is the real number and i is an integer, and B is the base number. For single precision, B can be 2 to the 

power of 360, and for double precision, B can be 2 to the power of 960, which is big enough to take care of over- 

and underflow from machine limitations. 

The main concept is that each real number has to be normalized its x values, so that any two x’s numbers time 

together; the results cannot have over- or underflow. For double precision, B=2^960, as the normalized range for 

any real number is between 2^(-480) to 2^480. To prepare associated Legendre polynomial coefficients using the 

traditional iteration method in x-number, we first put the associated Legendre polynomial coefficient in x-number, 

as f=x and i=0, then normalize it before any multiplication, and then normalize it again before any iteration with 

multiplication, etcetera, during entire iteration procedure. After all the associated Legendre polynomial coefficients 

in x-number are obtained, they are represented back to a real number f by the formula with x, B, and i. If an 

underflow results, then we put in zero. There is no overflow in our associated Legendre polynomial preparation.  

To test how x-number helps, we use the spectral transform utility in the NCEP library. First, we decide on a 

resolution and give it to all real parts of the spectral coefficients, then transform from the spectral coefficient to a 

physical grid, then transform from the physical grid values back to spectral coefficients. If the associated Legendre 

coefficients are correct, the resulting spectral coefficients after one complete spectral transform (from spectral to 

grid then grid to spectral), should be very close to the original value. Fig. 1 shows the absolute difference between 

the original value and value after one complete spectral transform without using x-number in base 10 logarithmic. 

There are incorrect transformed values above n>1500, the reason being the preparation of middle m values have 

underflow, which machine cannot present precisely, and the error accumulates through iterations from low value n 

to higher value n. 
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Fig. 2 is the same procedure as for Fig. 1 except it uses x-number to prepare associated Legendre polynomial 

coefficients for spectral transform. There is no error and accuracy is up to 6 or 7 digits. We can have even more 

accuracy by improving Gaussian weighting factor, not shown here. 

 

3. Discussion 

The Fukushima x-number method has been implemented into NCEP GFS for testing with resolutions of T574, 

T1534 and T3000 with success. The method concerns underflow on the multiplications only; there is no concern 

about overflow in associated Legendre polynomial coefficient preparation. And the x-number is used only for 

preparation; there is no change for spectral transform while using the Legendre polynomial coefficient, which is 

used as the real number, and not x-number in the model integration. The x-number was implemented into NCEP 

GFS for operational use in 2015. 

  
Fig. 1 log10 of the absolute difference between original 

spectral coefficient and after one complete spectral 

transform with traditional three-term iteration in T3000, 

which has linear Gaussian grids of 6144x3072. 

Fig. 2 The same as Fig. 1 except using x-number during 

iteration to prepare associated Legendre polynomial 

coefficients. 

 

Acknowledgments 

Thanks to Prof. Takeshi Enomoto of Kyoto University for discussion on Fukushima method and Dr. Mark Iredell of 

EMC for providing spectral transform routines for testing. 

 

References 

Fukushima, T., 2011: Numerical computation of spherical harmonics of arbitrary degree and order by extending 

exponent of floating point numbers. J. Geod., DOI 10.1007/s00190-011-0519-2. 

Swarztrauber, P. N, 1993: The vector harmonic transform method for solving partial differential equations in 

spherical geometry. Mon. Wea. Rev., 121,  3415-3437. 

Wedi, N. P., M. Hamrud, G. Mozdzynski, G. Austad, S, Curic, and J. Bidlot, 2012: Global, non-hydrostatic, 

convection-permitting, medium-range forecasts: progress and challenges. ECMWF Newsletter, 133, 17-22. 

 

 

 


