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In a recent paper, Marquet (2011) proposed a new moist-entropic potential temperature θs, 
linked to the second law of thermodynamics through its full equivalence to the specific moist 
entropy s, i.e. with consideration of the ‘dry air’ and ‘water species’ subparts of the 
atmospheric parcel, of specific content qd plus the total water specific content qt=1-
qd=qv+ql+qi. The likely advantage of θs with respect to earlier proposals is that it is both 
Lagrangian-conservative and tractable in mixing processes. Given the obvious links between 
any kind of potential temperature and vertical adiabatic lapse rates, we elected to do the 
analytical computation of such lapse rates on the basis of parcels keeping θs constant. This 
can be done without approximation only for the cases (i) of no condensed phase at all (named 
here ‘non-saturated’, rather than using the ambiguous ‘dry’) and (ii) of fully saturated 
conditions (named here ‘saturated’). Beware that we shall consider here only saturation with 
respect to liquid water, the extension to ice water conditions being rather straightforward. In 
fact the results presented below were obtained with the even more ambitious goal to look at 
the vertical stability under any (neutral or not) conditions, see Marquet and Geleyn (2012). 
But we shall concentrate here on the adiabatic lapse rates, going for this to further details than 
in the above-mentioned paper. 
 
Despite the apparent complexity of the analytical formulation for θs  
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the results in terms of adiabatic lapse rates are beautifully compact. Indeed, the formulations 
(11) and (16) to (18) in Marquet and Geleyn (2012) can be written as: 
 

- in the non-saturated case  pns cg /=Γ ; 

- in the saturated case  .
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The first formulation, with cp obviously depending on the parcel’s composition (qd, qv, ql, qi), 
was expected. But the second one differs from the ‘classical’ ones advocated by Durran and 
Klemp (1982) or Emmanuel (1994), which both contain an additional term in the lower case 



and do not return to g/cp when eliminating the aspects linked to condensation. Probably 
because of the very general character of θs, our saturated result on the contrary allows 
identifying as sole specific multipliers, the non-saturated adiabatic lapse rate, the ‘full parcel 
kappa’ R/cp and the Clausius-Clapeyron factor. The results thus sound logical and especially 
consistent, since they take into account in a fully logical way the dependence of Lvap, cp and R 
with the temperature and composition of the moist air. 
 
Now, if trying to get away from our extreme cases (non-saturated and saturated), one notices 
that, owing to their simplicity, the transition between both formulations is equivalent to just 
replacing the constant “1” by (R/cp) [  Lvap / (Rv T) ]. But the second value may also be 
reorganised in the shape [ Lvap / (cp T) ]  / (Rv /R). The latter expression is nothing else (Marquet 
and Geleyn, 2012, Appendix F) than the ratio of the impacts of water vertical transport on 
buoyancy, between saturated conditions (when only latent heat release acts) and non-saturated 
conditions (when only density-linked expansion acts). 
 
Hence, defining by C a weighting factor (which may, in a certain sense, be considered as the 
proportion of an air parcel being in saturated conditions), it is natural to express a generalised 
shape for the vertical adiabatic lapse rate, now under non-homogeneous conditions: 
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Two remarks are needed here: 
- Alike in the above-mentioned earlier publications, our definition of the saturation 
point corresponds to reversible conditions (i.e. at constant qt) and not to the 
irreversible ones of ‘permanent exact saturation’. In the second case it is qsw which 
would depend only on pressure and temperature, in the first case this happens for rsw. 
- If DC had been written with rv replacing rsw, Γ(C) would still have been compatible 
with its two extreme boundary conditions. But it is precisely in order to get the more 
logical situation of a term independent of the air parcel’s composition multiplying 
F(C) that we chose the above DC formulation for Γ(C), expressed in terms of rsw. 

 
Concerning the second remark, one may even make DC more compact with the help of the 
Clausius-Clapeyron relationship: 
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Most of this work was performed in the framework of the EU-ESF COST ES0905 action. 
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