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Global climate models with variable resolution are used to improve the representation of regional 
scales over an area of interest, avoiding the nesting issues of the limited-area models and reducing the 
computational costs compared to global uniform high-resolution models. To address some potential problems 
associated with the stretching and anisotropy of the computational grid, a general convolution filter operator 
was developed. The main feature of this filter is to locally remove scales shorter than a user-prescribed 
spatially varying length scale. 
 Over non-uniform grids, the only scales that can be represented over the entire domain are those with 
length scales larger than or equal to twice the maximum grid spacing 
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. In a stretched-grid model, it 
would be possible to remove anisotropic features associated with fine-scale structure of the mesh in only one 
dimension, such as in the arms-of-the-cross region surrounding the high-resolution area of interest. This may 
be an effective means of controlling aliasing of fine-scale features while they exit the high-resolution region 
and enter in the low-resolution part of the domain. In this case, the numerical filtering operator could suitably 
remove the unwanted small scales outside the uniform high-resolution area.  
 The convolution operator was chosen to design the filtering formula. For a signal 
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& . Using the convolution theorem and taking the Fourier transform 

of the initial 
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"  and the filtered 

! 

"  fields to evaluate the ratio of their spectral amplitudes, one finds that the 
required weighting function w is the inverse Fourier transform of the desired response function (e.g. Surcel 
2005). The numerical filtering operator that will remove all the waves that are not correctly represented 
outside the high-resolution region has a spectral response that corresponds to keeping unchanged the large 
scales with wavenumber smaller than 
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are resolved everywhere on the grid), and removing entirely small scales with wavenumber larger than a 
chosen value of 
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, with a gradual transition in between to reduce Gibbs’ phenomenon. The 

convolution theorem then gives 
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, where 
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d = x " s. Although the 

formal definition of the convolution exists for continuous space, its practical application needs a definition 
using a discrete set of points. Also, the presence of non-vanishing values over the entire domain is 
problematic because of excessive computational costs. Given that the values become small after some 
distance from the origin, truncating the weighting function after some distance can result in an important 
reduction in computational costs. While the truncation distance is an important parameter for the precision of 
the filter, the distance between the wavenumbers a and b affects also the choice of the truncation distance and 
subsequently the precision of the filter. A weighting function corresponding to an abrupt change in the 
spectral response contains large oscillations, and needs a large truncation distance, while a more gradually 
varying response function gives rise to a narrow weighting function, and thus to a much smaller acceptable 
truncation distance, in order to approximate adequately the theoretical response.  

The application of the convolution filter for a variable resolution domain is tested considering a 
periodic 1D stretched grid 
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0,2"[ ]  with a stretching factor 
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# 4 . This grid contains 60 to 64% 
from the total number of grid points in the high-resolution area, even if the area represents only 1/3 from the 
entire domain. The filter is tested using the 1D test-function as 
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 is a large-

scale wave representing the physical signal that is properly represented on the entire domain, and 
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n
 is a 

small-scale wave representing the noise which is chosen to be zero in the low-resolution part of the domain, 
gradually increased in the stretching areas, and is maximum in the high-resolution area of the domain. The 
skill of the filter is quantitatively evaluated by comparing the filtered solution 

! 

"  with the expected analytical 



solution 
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l
, using two scores: the normalized root-mean square error (NRMS) that is computed between the 

filtered solution and the expected analytical solution, and the normalized conservation ratio (NCR) calculated 
as the mean error between the filtered and unfiltered solution (Surcel and Laprise, 2010).  

A first example presents a test function containing a noise with wavenumber 
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convolution filter used a weighting function 
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1
 defined by 
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b =1.5a; in this case a 
truncation distance 
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 was adequate to completely remove the noise while maintaining the large-
scale signal. The effects of using different weighting functions was studied employing the same test function 
and two different weighting functions: 
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b = 2a). The 
NRMS score (Fig. 1b) shows that the noise is completely removed if an adequate truncation distance is used 
and this distance is shorter for the filter with a more gradual response (
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). In this case we note also a better 

conservation expressed by a NCR score, which approaches zero for a truncation distance larger than 
    

! 

10"x
min

 
as it can be seen in Fig. 1c. 

 
Figure 1. (a) The initial test function (blue) containing a noise with wavenumber 
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 and the filtered field (red) are 
represented on a grid with 

! 

S " 4 . The convolution uses the weighting function 
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w
1
 and a truncation distance 
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d
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= 5"x
max

. The 
NRMS (b) and the NCR (c) scores as a function of the truncation distance, for two different weighting functions.  

The formal approach developed in 1D is generalized for two-dimensional domains. The 2D 
convolution uses a weighting function that is the product of two 1D functions, similar with those used in one-
dimensional case. In practice, the 2D filtered function is obtained conveniently by successive applications of 
1D filter in each direction. It is important to reiterate that in our proposed convolution filter approach, the 
weights are calculated using physical distances rather than grid-point indices. 
 Similarly to our tests in 1D, test functions using 2D sinusoidal waveforms were chosen to represent 
the large-scale signal that will be retained by the filter and the noise that will be removed. The example 
presented in Fig. 2 shows the initial signal (a) and the filtered function when the convolution uses the 
weighting function 
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 and truncation distances of 
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 (b) and 
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The proposed approach appears to be a valuable alternative to a conventional grid-point based 

smoothing operator for stretched-grid models. The filter can be used to render quasi-isotropic fields on 
variable-resolution grids. A key element of this approach is that the weighting function is based on the 
physical distance rather than grid point indices. The convolution filter developed in 1D and generalised for 
2D Cartesian geometry will next be adapted for polar geometry. 
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Figure 2: The initial test field on the 
2D stretched-grid with 
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S " 4  (a). The 
filtered fields after application of a 
convolution filter with 1D weighting 
function 
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w
1
 and truncation distances 

of 
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 (b) and 
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min

 (c).  
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